Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Anisoplanatism in adaptive optics

Not Accessible

Your library or personal account may give you access

Abstract

We examine the consequences for an adaptive-optics system of the fact that the turbulence-induced wave-front distortion for two propagation paths with only slightly different propagation directions can be significantly different. We consider the implications of this fact for a compensated imaging system and for an adaptive-optics laser transmitter. Theory and numerical results are presented. The basic results are presented in terms of the average optical transfer function of a compensated imaging system and in terms of the average antenna gain of an adaptive-optics laser transmitter, each expressed as a function of the angular separation ϑ between the propagation path along which the reference signal arrives and the propagation path along which the adaptive-optics system is to provide performance. It is shown that for high spatial frequencies (for the compensated imaging system) and for large-aperture diameters (for the adaptive-laser optics transmitter), i.e., large compared with r0/λ and with r0, respectively, the magnitude of the anisoplanatism effect can be characterized by an isoplanatic patch angular size, which we denote by ϑ0. If the angular separation between the two propagation paths is ϑ, it is shown that the optical transfer function and the antenna gain are each reduced by a factor of exp[−(ϑ/ϑ0)5/3]. This simply expressed performance-reduction factor represents an asymptotic limit for high spatial frequencies and for large transmitter diameters. For lower spatial frequencies and smaller transmitter diameters the reduction factor is not so severe. Numerical results are presented to illustrate this.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Anisoplanatism effects on signal-to-noise ratio performance of adaptive optical systems

Steven E. Troxel, Byron M. Welsh, and Michael C. Roggemann
J. Opt. Soc. Am. A 12(3) 570-577 (1995)

Anisoplanatic deconvolution of adaptive optics images

Ralf C. Flicker and François J. Rigaut
J. Opt. Soc. Am. A 22(3) 504-513 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved