Abstract
The variance of the irradiance scintillations of a wave that propagates in a random medium is calculated by using the extended Huygens–Fresnel principle (EHFP) and then compared with numerical solutions of the parabolic equation for the fourth-order statistical moment. Results are presented for the propagation of Gaussian beams and plane waves in a two-dimensional random medium with a Gaussian correlation function. Various formulations of the EHFP are considered, with particular emphasis on the often-used phase approximation of the EHFP. It is shown that, although both methods predict saturation, there is a considerable disagreement at moderate ranges.
© 1983 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (10)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (38)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription