Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wave propagation in random media: a comparison of two theories

Not Accessible

Your library or personal account may give you access

Abstract

The variance of the irradiance scintillations of a wave that propagates in a random medium is calculated by using the extended Huygens–Fresnel principle (EHFP) and then compared with numerical solutions of the parabolic equation for the fourth-order statistical moment. Results are presented for the propagation of Gaussian beams and plane waves in a two-dimensional random medium with a Gaussian correlation function. Various formulations of the EHFP are considered, with particular emphasis on the often-used phase approximation of the EHFP. It is shown that, although both methods predict saturation, there is a considerable disagreement at moderate ranges.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Fourth Moment of a Wave Propagating in a Random Medium*

W. P. Brown
J. Opt. Soc. Am. 62(8) 966-971 (1972)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved