Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ellipsometric formulas for an inhomogeneous layer with arbitrary refractive-index profile

Not Accessible

Your library or personal account may give you access

Abstract

The reflectances of inhomogeneous layers are usually calculated by numerical solution of Maxwell’s equations. This requires a specific model for the layer structure. We are interested here in the inverse problem: finding the refractive-index profile n(z) from ellipsometric data (ψ and Δ). We have calculated the reflectances explicitly in a first Born approximation [i.e., to first order in n(z) − n0, where n0 is the index of the pure liquid]. The effect of the reflecting wall at z = 0 is incorporated exactly. Finally, we express ψ and Δ in terms of the Fourier transform of the profile Γ(2q), where q is the normal component of the incident wave vector. The equation Γ(2q) = Γ′ + iΓ″ is complex; one can construct Γ′(2q) and Γ″(2q) in terms of the experimental ψ and Δ for all the accessible span of q vectors. For thick diffuse layers of thickness e ≫ λ/4π, this should allow for a complete reconstruction of the profile. For thin layers, e ≪ λ/4π, what are really measured are the moments Γ0 and Γ1 (of orders 0 and 1) of the index profile. To illustrate these methods, we discuss two specific examples of a slowly decreasing index profile: (1) wall effects in critical binary mixtures and (2) polymer adsorption from a good solvent.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Effective ellipsometric thickness of an interfacial layer

C. M. Marques, J. M. Frigerio, and J. Rivory
J. Opt. Soc. Am. B 8(12) 2523-2528 (1991)

Formulas for TE01 cutoff in optical fibers with arbitrary index profile

Yasuo Kokubun and Kenichi Iga
J. Opt. Soc. Am. 70(1) 36-40 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (88)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.