Abstract
Modeling the field produced by a point-like dipole with an arbitrary location in the presence of a rotationally invariant nanostructure is an important issue in the context of designing nanoantennas. This is a challenging problem, as rotational symmetry is broken when introducing a noncentered dipole. Antennas larger than the wavelength are required for directivity, whereas the dipole–antenna distance is highly subwavelength, so there are two different length scales in the problem. In this paper, we introduce an original S-matrix approach based on an aperiodic-Fourier modal method. The potential of the technique is illustrated by considering three examples. We compare our results with a finite element technique.
© 2014 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (8)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (30)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription