Abstract
Imaging of Gaussian Schell-model sources by general lossless systems is analyzed with an extended ray-transfermatrix method. Algebraic expressions are derived for the location, size, and coherence area of the image waist and for the depth of focus and the far-field diffraction angle. These results are shown to provide a continuous transformation between laser-beam optics and geometrical optics. They also lead naturally to several equivalence and invariance relations pertaining to isotropic and anisotropic Gaussian Schell-model sources. As an application, the importance of effects due to partial spatial coherence in beam focusing is examined.
© 1988 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (4)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (38)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription