Abstract
Computer-generated holograms (CGH’s) synthesized by the iterative direct-binary-search (DBS) algorithm yield lower reconstruction error and higher diffraction efficiency than do CGH’s designed by conventional methods, but the DBS algorithm is computationally intensive. A fast algorithm for DBS is developed that recursively computes the error measure to be minimized. For complex amplitude-based error, the required computation for an L-point CGH is reduced by a factor of (L/log2L)1/2. The fast intensity-based algorithm is substantially more complicated, and modifications are considered in order to make the algorithm more efficient. An acceleration technique that attempts to increase the rate of convergence of the DBS algorithm is also investigated.
© 1991 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (6)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (5)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (24)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription