Abstract
The dispersion relation of Bloch waves is derived from the properties of a single grating layer. A straightforward way to impose the Bloch condition leads to the calculation of the eigenvalues of the transfer matrix through the single grating layer. Unfortunately, the transfer-matrix algorithm is known to be unstable as a result of the growing evanescent waves. This problem appears again in the calculation of the eigenvalues, making unusable the transfer matrix in numerous practical problems. We propose two different algorithms to circumvent this problem. The first one takes advantage of scattering matrices, while the second one takes advantage of impedance matrices. Numerical evidence of the efficiency of the algorithms is given. Dispersion diagrams of simple cubic and woodpile photonic crystals are obtained by using, respectively, the scattering and impedance matrices.
© 2002 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (10)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (33)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription