Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Luminance

Not Accessible

Your library or personal account may give you access

Abstract

Luminance was introduced by the CIE as a photometric analog of radiance. This implies that an additive spectral-luminosity function characterizes the human observer. In practice, many different spectral-sensitivity functions characterize human vision, although few produce the additive spectral-luminosity function V(λ), which is suitable for use in practical photometry. Methods that give rise to additive spectral-sensitivity functions that most resemble V(λ) tend to have in common the use of spatial or temporal frequencies that will discriminate against signals from the short-wavelength-sensitive cone pathways or against signals in chromatic pathways. Some of the difference among results obtained with different techniques seems to other the extent to which the methods can bring about changes in the state of chromatic adaptation, but it also reflect seems likely that not all tasks tap the same postreceptoral mechanisms. Psychophysical evidence is equivocal regarding the nature of the postreceptoral mechanisms: some evidence suggests just three mechanisms, one of which has a spectral sensitivity that is like V(λ);other evidence suggests the existence of multiple mechanisms with different spectral sensitivities. Physiological recordings from neurons in the macaque’s visual pathway suggest that the properties of the magnocellular system may be sufficient to account for spectral-sensitivity functions measured with the techniques of heterochromatic flicker photometry, minimally distinct border, and critical flicker fusion. These are the psychophysical methods that yield spectral sensitivities that are most like V(λ). Other methods of measuring spectral sensitivity seem more likely to depend on signals that travel through the parvocellular system.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Contrast adaptation dissociates different measures of luminous efficiency

Michael A. Webster and J. D. Mollon
J. Opt. Soc. Am. A 10(6) 1332-1340 (1993)

Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic temporal modulation

J. Kremers, B. B. Lee, and P. K. Kaiser
J. Opt. Soc. Am. A 9(9) 1477-1485 (1992)

Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation

B. B. Lee, P. R. Martin, A. Valberg, and J. Kremers
J. Opt. Soc. Am. A 10(6) 1403-1412 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved