Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of atmospheric turbulence phase statistics using wave-front slope measurements

Not Accessible

Your library or personal account may give you access

Abstract

Turbulence has long been recognized as one of the most significant factors limiting the performance of optical systems operating in the presence of atmosphere. Atmospheric turbulence over vertical paths has been well characterized, both theoretically and experimentally. Much less is known about turbulence over long, horizontal paths. Perturbations of the wave-front phase can be measured with a Hartmann wave-front sensor (H-WFS). One can use these measurements to characterize atmospheric turbulence directly. Theoretical expressions for the slope structure function of the H-WFS measurements are derived and evaluated with the use of numerical quadrature. By concentrating on the slope structure function, we avoid the phase reconstruction step and use the slope measurements in a more direct fashion. The theoretical slope structure function is compared with estimated slope structure functions computed from H-WFS measurements collected in a series of experiments conducted by researchers at the U.S. Air Force’s Phillips Laboratory. These experiments involved H-WFS measurements over high-altitude (airborne) horizontal paths 20–200 km in length.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Atmospheric characterization in the presence of strong additive measurement noise

Roque Kwok-Hung Szeto and Robert Russell Butts
J. Opt. Soc. Am. A 15(6) 1698-1707 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.