Abstract
The least-squares phase-fitting method, developed recently without any statistical justification, extracts an almost noiseless phase directly from the distribution of the intensities of phase-shifted speckle interference patterns [C. K. Hong, et al., Opt. Lett. 20, 931 (1995)]. We present another method that can do the same by using the statistically well-established maximum-likelihood algorithm. Numerical simulations show that the precision of the maximum-likelihood estimate is better than that of the least-squares method by 19% and that its precision essentially achieves the one given by the Cramér–Rao lower bound. The limitations of the two methods subject to the phase variation within a fitting window are also studied.
© 1997 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (9)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (35)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription