Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimizing the performance of closed-loop adaptive-optics control systems on the basis of experimentally measured performance data

Not Accessible

Your library or personal account may give you access

Abstract

An experimental method is presented to optimize the control algorithm for a closed-loop adaptive-optics system employed with an astronomical telescope. The technique uses wave-front sensor measurements from an independent scoring sensor to calculate adjustments to the wave-front reconstruction algorithm and the bandwidth of the adaptive-optics control loop that will minimize the residual mean-square phase distortion as measured by this sensor. Specifying the range of possible adjustments defines the class of control algorithms over which system performance will be optimized. In particular, the technique can be used to compute an optimized wave-front reconstruction matrix for use with a prespecified adaptive-optics control-loop bandwidth, optimize the control-loop bandwidth for a given reconstruction matrix, optimize the individual modal control bandwidths for a fixed modal reconstructor, or simultaneously optimize both the wave-front modes and their associated control bandwidths for a fully optimized modal control algorithm. The method applies to closed-loop adaptive-optics systems that incorporate one or more natural or laser guide stars and one or more deformable mirrors that are optically conjugate to distinct ranges along the propagation path. Initial experimental results are reported for the case of a hybrid adaptive-optics system incorporating one natural guide star, one laser guide star, and one deformable mirror. These results represent what is to the authors’ knowledge the first stable closed-loop operation of an adaptive-optics system using multiple guide stars.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimizing closed-loop adaptive-optics performance with use of multiple control bandwidths

Brent L. Ellerbroek, Charles Van Loan, Nikos P. Pitsianis, and Robert J. Plemmons
J. Opt. Soc. Am. A 11(11) 2871-2886 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (98)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.