Abstract
Analytic expressions for the time-averaged electromagnetic energy within a dispersive and absorbing sphere on which a plane wave is incident are derived. Numerical results are presented for diatomic ionic crystal spheres and for metallic, nearly free-electron-like spheres. It is found that the stored energy exhibits resonant enhancement near resonances of the sphere’s extinction cross section. In the Rayleigh region the energy increase at resonance may amount to more than three orders of magnitude. The energy formula is applied to the calculation of the energy transport velocity in a disordered medium containing dispersive spheres.
© 1998 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (7)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (16)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription