Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Assessing and optimizing the performance of a phase-shifting interferometer capable of measuring the complex index of refraction and the surface profile of a test surface

Not Accessible

Your library or personal account may give you access

Abstract

A novel interferometer based upon a conventional phase-shifting design is further investigated. This interferometer is capable of measuring both the real and imaginary parts of the complex index of refraction and the surface profile of a test surface. Maximum-likelihood estimation theory is shown to be an effective means of extracting the three parameters of interest from the measured data. Cramér–Rao lower bounds are introduced as a means of quantitatively assessing the performance of the system. Furthermore, it is shown that as the design parameters are optimized, the results approach the theoretical performance limit. We conclude by developing the underlying theory behind the relationship of the complex-index-of-refraction estimates to the surface-profile estimate.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase-shifting interferometry and maximum-likelihood estimation theory. II. A generalized solution

Eric W. Rogala and Harrison H. Barrett
Appl. Opt. 37(31) 7253-7258 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (28)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved