Abstract
The higher-order correction terms of the electric field vector of a Gaussian beam are derived explicitly from the magnetic vector potential that is assumed to be Gaussian and linearly polarized at the plane. The correction terms are proved to satisfy exactly Lax’s recurrence equations [Phys. Rev. A 11, 1365 (1975)]. The electric field vector with correction terms of orders up to 3 is compared with the exact electric field vector of an integral form that is also derived from the magnetic vector potential.
© 1999 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (19)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription