Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vector diffraction analysis by discrete-dipole approximation

Not Accessible

Your library or personal account may give you access

Abstract

The discrete-dipole approximation is applied to vector diffraction analysis in a system with large-numerical-aperture (NA) optics and subwavelength targets. Distributions of light diffracted by subwavelength dielectric targets are calculated in a solid angle that corresponds to a NA of 0.9, and their dependence on incident polarization, target shape, and target size is studied. Electric field distributions inside the target are also shown. Basic features of the vector diffraction are clearly demonstrated. This technique facilitates understanding of the vectorial effects in systems that are expected to be applied in the future to optical data storage.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiation forces in the discrete-dipole approximation

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot
J. Opt. Soc. Am. A 18(8) 1944-1953 (2001)

Discrete-Dipole Approximation For Scattering Calculations

Bruce T. Draine and Piotr J. Flatau
J. Opt. Soc. Am. A 11(4) 1491-1499 (1994)

Application of the discrete dipole approximation for dipoles embedded in film

Euiwon Bae, Haiping Zhang, and E. Daniel Hirleman
J. Opt. Soc. Am. A 25(7) 1728-1736 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.