Abstract
Inversion of a finite-convolution operator is known to be an ill-posed problem. However, although the complete solution cannot be recovered to within any specified accuracy, certain components of the solution can be accurately determined. We present an estimate of the number of such components, termed here the essential dimension of the finite-convolution operator, that is dependent on the noise levels in the data, the desired accuracy in the solution, and the singular values of the finite convolution. We then show that the required singular values may be easily and accurately approximated so that the essential dimension is easily estimated and indicate its superiority over previously proposed measures of ill conditioning for this problem.
© 1985 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (51)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription