Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Planar photonic crystal structure with inherently single-mode waveguides

Not Accessible

Your library or personal account may give you access

Abstract

A planar photonic crystal that allows inherently gap-guided single-mode waveguides is proposed and discussed. This novel structure consists of a two-dimensional lattice of silicon rods embedded on a thin silica slab sandwiched between two silica claddings whose refractive indices are slightly lower than the index of the silica core. The physical parameters of the structure, i.e., rod radius and core thickness, are optimized to maximize the bandgap width for odd modes. Lossless guided modes inside the bandgap and below the claddings’ light cone are obtained by reducing the radius of a row of rods. The waveguide bandwidth can be increased by inserting a thin silicon dielectric waveguide instead of the row of rods. The proposed approach may overcome many of the common drawbacks in conventional holes-on-dielectric planar photonic crystal waveguides.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
General methods for designing single-mode planar photonic crystal waveguides in hexagonal lattice structures

N. Wu, M. Javanmard, B. Momeni, M. Soltani, A. Adibi, Y. Xu, and R. K. Lee
Opt. Express 11(12) 1371-1377 (2003)

Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant

Rolando Ferrini, Romuald Houdré, Henri Benisty, Min Qiu, and Jürgen Moosburger
J. Opt. Soc. Am. B 20(3) 469-478 (2003)

Low-loss guided modes in photonic crystal waveguides

Dario Gerace and Lucio Claudio Andreani
Opt. Express 13(13) 4939-4951 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.