Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intrinsic speckle noise in off-axis particle holography

Not Accessible

Your library or personal account may give you access

Abstract

In holographic imaging of particle fields, the interference among coherent wave fronts associated with particle scattering gives rise to intrinsic speckle noise, which sets a fundamental limit on the amount of information that particle holography can deliver. It has been established that the intrinsic speckle noise is especially severe in in-line holography because of superposition of virtual image waves, the direct transmitted wave, and the real image. However, at sufficiently high particle number densities, such as those typical in holographic particle image velocimetry (HPIV) applications, intrinsic speckle noise also arises in off-axis particle holography from self-interference among wave fronts that form the real image of particles. To overcome the latter problem we have constructed a mathematical model that relates the first- and second-order statistical properties of the intrinsic speckle noise to relevant holographic system parameters. Consistent with our experimental data, the model provides a direct estimate of the information capacity of particle holography. We show that the noise-limited information capacity can be expressed as the product of particle number density and the extent of the particle field along the optical axis. A large angular aperture of the hologram contributes directly to achievement of high information capacity. We also show that filtering in either digital or optical form is generally ineffective in removing the intrinsic speckle noise from the particle image as a result of the similar spectral properties of the two. These findings emphasize the importance of angular aperture in designing holographic particle imaging systems.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Intrinsic aberrations due to Mie scattering in particle holography

Ye Pu and Hui Meng
J. Opt. Soc. Am. A 20(10) 1920-1932 (2003)

Intrinsic speckle noise in in-line particle holography

Hui Meng, W. L. Anderson, Fazle Hussain, and David D. Liu
J. Opt. Soc. Am. A 10(9) 2046-2058 (1993)

Four-dimensional dynamic flow measurement by holographic particle image velocimetry

Ye Pu and Hui Meng
Appl. Opt. 44(36) 7697-7708 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved