Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vector near-field calculation of scanning near-field optical microscopy probes using Borgnis potentials as auxiliary functions

Not Accessible

Your library or personal account may give you access

Abstract

A new boundary integral equation method for solving the near field in three-dimensional vector form in scanning near-field optical microscopy (SNOM) using Borgnis potentials as auxiliary functions is presented. A boundary integral equation of the electromagnetic fields, expressed by Borgnis potentials, is derived based on Green’s theorem. The harmonic expansion in rotationally symmetric SNOM probe–sample systems is studied, and the three-dimensional electromagnetic problem is partly simplified into a two-dimensional one. The boundary conditions of Borgnis potentials both on dielectric boundaries and on perfectly conducting boundaries are derived. Relevant algorithms were studied, and a computer program was written. As an example, a SNOM probe–sample system composed of a round metal-covered probe and a sample with a flat surface has been numerically studied, and the computational results are given. This new method can be used efficiently for other electromagnetic field problems with round subwavelength structures.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy

Xueen Wang, Zhaozhong Fan, and Tiantong Tang
J. Opt. Soc. Am. A 22(12) 2730-2736 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (80)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved