Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture by using Borgnis potentials. I. General theory

Not Accessible

Your library or personal account may give you access

Abstract

A method is proposed, on the basis of the vector electromagnetic theory, for the numerical calculation of the diffraction of a converging electromagnetic wave by a circular aperture by using Borgnis potentials as auxiliary functions. The diffraction problem of vector electromagnetic fields is simplified greatly by solving the scalar Borgnis potentials. The diffractive field is calculated on the basis of the boundary integral equation, taking into consideration the contribution of the field variables on the diffraction screen surface, which is ignored in the Kirchhoff assumption. An example is given to show the effectiveness and suitability of this method and the distinctiveness of the diffractive fields caused by the vector characteristics of the electromagnetic fields.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Vector near-field calculation of scanning near-field optical microscopy probes using Borgnis potentials as auxiliary functions

Xueen Wang, Zhaozhong Fan, and Tiantong Tang
J. Opt. Soc. Am. A 22(7) 1263-1273 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved