Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Minimization of geometric-beam broadening in a grating-based time-domain delay line for optical coherence tomography application

Not Accessible

Your library or personal account may give you access

Abstract

This paper discusses a dispersion effect in a grating-based time-domain delay line that is different from the second- or higher-order dispersion in a grating-based Fourier-domain delay line. When the lateral broadening of the beam profile after grating dispersion exceeds the collection aperture of the reference fiber, the peripheral spectrum is decoupled by the fiber. The loss of reference spectral bandwidth by this geometric-beam broadening thus degrades the axial resolution. The polarizing-beam reflector used in the Fourier-domain delay line for suppression of lateral beam walk-off is implemented in this grating-based time-domain delay line to minimize geometric-beam broadening. Theoretical analysis and experiments are given to validate the axial resolution improvement after geometric-beam broadening is minimized. In vitro and in vivo imaging results are presented to demonstrate the improvement. It is also shown that geometric-beam broadening may exist in other optical coherence tomography reference arm configurations.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved