Abstract
We address the problem of inpainting noisy photographs. We present a recursive image recovery scheme based on the unscented Kalman filter (UKF) to simultaneously inpaint identified damaged portions in an image and suppress film-grain noise. Inpainting of the missing observations is guided by a mask-dependent reconstruction of the image edges. Prediction within the UKF is based on a discontinuity-adaptive Markov random field prior that attempts to preserve edges while achieving noise reduction in uniform regions. We demonstrate the capability of the proposed method with many examples.
© 2010 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (9)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (15)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription