Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pseudo-time particle filtering for diffuse optical tomography

Not Accessible

Your library or personal account may give you access

Abstract

We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated).

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Convergence analysis of the Newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography

Hari M. Varma, B. Banerjee, D. Roy, A. K. Nandakumaran, and R. M. Vasu
J. Opt. Soc. Am. A 27(2) 259-267 (2010)

Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography

Samir Kumar Biswas, Rajan Kanhirodan, Ram Mohan Vasu, and Debasish Roy
J. Opt. Soc. Am. A 28(8) 1784-1795 (2011)

Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography

Samir Kumar Biswas, Rajan Kanhirodan, Ram Mohan Vasu, and Debasish Roy
J. Opt. Soc. Am. A 29(6) 1017-1026 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved