Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffraction characteristics of optical elements designed as phase layers with cosine-profiled periodicity in the azimuthal direction

Not Accessible

Your library or personal account may give you access

Abstract

The article concerns an investigation of the Fresnel diffraction characteristics of two types of phase optical elements under Gaussian laser beam illumination. Both elements provide an azimuthal periodicity of the phase retardation. The first element possesses azimuthal cosine-profiled phase changes deposited on a plane base. The second element is a combination of the first element and a thin phase axicon. The cosine profile of the phase retardation of both diffractive elements produces an azimuthal cosine-profiled modulation on their diffractograms. It destroys the vortex characteristics of their diffraction fields.

© 2011 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.