Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical schemes for speckle suppression by Barker code diffractive optical elements

Not Accessible

Your library or personal account may give you access

Abstract

A method for speckle suppression based on Barker code and M-sequence code diffractive optical elements (DOEs) is analyzed. An analytical formula for the dependence of speckle contrast on the wavelength of the laser illumination is derived. It is shown that speckle contrast has a wide maximum around the optimal wavelength that makes it possible to obtain large speckle suppression by using only one DOE for red, green, and blue laser illumination. Optical schemes for implementing this method are analyzed. It is shown that the method can use a simple liquid-crystal panel for phase rotation instead of a moving DOE; however, this approach requires a high frequency of liquid-crystal switching. A simple optical scheme is proposed using a 1D Barker code DOE and a simple 1D liquid-crystal panel, which does not require a high frequency of liquid-crystal switching or high-accuracy DOE movement.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element

Anatoliy Lapchuk, Andriy Kryuchyn, Vyacheslav Petrov, and Volodymyr Klymenko
J. Opt. Soc. Am. A 30(2) 227-232 (2013)

Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements

Anatoliy Lapchuk, Andriy Kryuchyn, Vyacheslav Petrov, Victor Yurlov, and Volodymyr Klymenko
J. Opt. Soc. Am. A 30(1) 22-31 (2013)

Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE

A. Lapchuk, O. V. Shyhovets, A. Kryuchyn, V. Petrov, G. A. Pashkevich, O. V. Bogdan, A. Kononov, and A. Klymenko
J. Opt. Soc. Am. A 30(11) 2253-2258 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved