Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization

Not Accessible

Your library or personal account may give you access

Abstract

Discrete-dipole approximation (DDA), which is used for computing scattering and absorption by particles of arbitrary geometry and material, is extended to the case of a rectangular cuboidal point lattice using an accurate, analytical expression of the polarizability of each cuboidal element at optical frequencies of up to 100 nm in size. This polarizability formulation (cuboidal lattice with depolarization or CLD) is shown to be more accurate in the computation of the extinction, scattering, and absorption cross sections when simulating dielectrics compared to other available and commonly used expressions of the polarizability. This can be used to reduce the number of dipoles N used, and therefore, the computation time while achieving the same accuracy of other formulations. The CLD formulation was applied to the Mie scattering problem and the results were compared to results from other DDA formulations, as well as to the Mie analytical solution for metal and dielectric spheres. Metal cubes were also simulated and different formulations compared.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Discrete-Dipole Approximation For Scattering Calculations

Bruce T. Draine and Piotr J. Flatau
J. Opt. Soc. Am. A 11(4) 1491-1499 (1994)

Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry

Matthew J. Collinge and B. T. Draine
J. Opt. Soc. Am. A 21(10) 2023-2028 (2004)

Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block–Toeplitz structure

Piotr J. Flatau, Graeme L. Stephens, and Bruce T. Draine
J. Opt. Soc. Am. A 7(4) 593-600 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved