Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonparaxial propagation of elliptical Gaussian vortex beams in uniaxial crystal orthogonal to the optical axis

Not Accessible

Your library or personal account may give you access

Abstract

Analytical expressions for the three components of nonparaxial propagation of a polarized elliptical Gaussian vortex beam in uniaxial crystal orthogonal to the optical axis are derived. Intensity and phase distributions of the three components of a polarized elliptical Gaussian vortex beam propagating in a uniaxial crystal orthogonal to the optical axis are illustrated by numerical examples. The influences of the initial beam’s parameters and the parameters of the uniaxial crystal on the evolution of the beam’s intensity and phase distributions in the uniaxial crystal are examined in detail. Results show that the statistical properties of an elliptical Gaussian vortex beam nonparaxially propagating in uniaxial crystal orthogonal to the optical axis are closely determined by the initial beam’s parameters and the parameters of the crystal. The beam waist width ω0 not only affects the size of the beam profile in uniaxial crystal but also determines the nonparaxial effect of an elliptical Gaussian vortex beam. The profile of an elliptical Gaussian vortex beam in the uniaxial crystal becomes twisted and tilted, whether the elliptical factor α is greater or smaller than unity. The beam profile is tilted to the left in positive crystal. In contrast, it is inclined to the right in negative crystal. The results indicate that uniaxial crystal provides a convenient method to modulate the intensity and phase distributions of an elliptical Gaussian vortex beam, which is beneficial to optical manipulation of microscopic particles and nonlinear optics involving a specific beam profile and phase.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonparaxial propagation of Lorentz–Gauss beams in uniaxial crystal orthogonal to the optical axis

Xun Wang, Zhirong Liu, and Daomu Zhao
J. Opt. Soc. Am. A 31(4) 872-878 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved