Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modal method for the 2D wave propagation in heterogeneous anisotropic media

Not Accessible

Your library or personal account may give you access

Abstract

A multimodal method based on a generalization of the admittance matrix is used to analyze wave propagation in heterogeneous two-dimensional anisotropic media. The heterogeneity of the medium can be due to the presence of anisotropic inclusions with arbitrary shapes, to a succession of anisotropic media with complex interfaces between them, or both. Using a modal expansion of the wave field, the problem is reduced to a system of two sets of first-order differential equations for the modal components of the field, similar to the system obtained in the rigorous coupled wave analysis. The system is solved numerically, using the admittance matrix, which leads to a stable numerical method, the basic properties of which are discussed. The convergence of the method is discussed, considering arrays of anisotropic inclusions with complex shapes, which tend to show that Li’s rules are not concerned within our approach. The method is validated by comparison with a subwavelength layered structure presenting an effective anisotropy at the wave scale.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Transient electromagnetic wave propagation in anisotropic dispersive media

Jonas Fridén, Gerhard Kristensson, and Rodney D. Stewart
J. Opt. Soc. Am. A 10(12) 2618-2627 (1993)

General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media

Maarten Sluijter, Dick K. G. de Boer, and Joseph J. M. Braat
J. Opt. Soc. Am. A 25(6) 1260-1273 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.