Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Particle-filter-based phase estimation in digital holographic interferometry

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose a particle-filter-based technique for the analysis of a reconstructed interference field. The particle filter and its variants are well proven as tracking filters in non-Gaussian and nonlinear situations. We propose to apply the particle filter for direct estimation of phase and its derivatives from digital holographic interferometric fringes via a signal-tracking approach on a Taylor series expanded state model and a polar-to-Cartesian-conversion-based measurement model. Computation of sample weights through non-Gaussian likelihood forms the major contribution of the proposed particle-filter-based approach compared to the existing unscented-Kalman-filter-based approach. It is observed that the proposed approach is highly robust to noise and outperforms the state-of-the-art especially at very low signal-to-noise ratios (i.e., especially in the range of 5 to 20 dB). The proposed approach, to the best of our knowledge, is the only method available for phase estimation from severely noisy fringe patterns even when the underlying phase pattern is rapidly varying and has a larger dynamic range. Simulation results and experimental data demonstrate the fact that the proposed approach is a better choice for direct phase estimation.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Signal tracking approach for phase estimation in digital holographic interferometry

Rahul G. Waghmare, Deepak Mishra, G. R. K. Sai Subrahmanyam, Earu Banoth, and Sai Siva Gorthi
Appl. Opt. 53(19) 4150-4157 (2014)

Closed fringe demodulation using phase decomposition by Fourier basis functions

Rishikesh Kulkarni and Pramod Rastogi
J. Opt. Soc. Am. A 33(6) 1120-1125 (2016)

Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method

Sai Siva Gorthi, G Rajshekhar, and Pramod Rastogi
Opt. Express 18(2) 560-565 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved