Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis

Not Accessible

Your library or personal account may give you access

Abstract

An experimental and theoretical investigation of the preparation and exposure of multilayer photosensitive materials is presented. It is shown how the recorded change in the refractive index in each layer depends on the dye (photosensitizer) concentrations in each layer. It is also shown how the photosensitive material properties in each layer can be controlled to optimize some recording characteristics for particular applications. To do so, a set of equations, predicting the amplitude of higher harmonics refractive index amplitudes induced in the material layers with depth during exposure, is derived. This results in a technique for varying the dye concentration in each layer of a multilayer, so as to optimize volume diffraction grating performance. In part I of this paper, the 3D nonlocal photopolymerization-driven diffusion (NPDD) model is applied to calculate the resulting combined multilayer absorption and polymerization processes. The NPDD describes the time-varying behaviors taking place during exposure in such photopolymer materials. Simulations are performed for an acrylamide/polyvinyl alcohol-based photopolymer containing erythrosine-B dye. It is predicted that, in general, non-uniform gratings are formed, with the resulting refractive index being distorted both from the ideal sinusoidal cross-sectional spatial distribution and also with depth. This agrees with previous results indicating that increasing the thickness of a single photopolymer layer does not in practice lead to ever-increasing angular selectivity. In part II of this paper, it is confirmed experimentally that a suitably modified multilayer can be used to increase grating angular selectivity, i.e., reduce the width of the off-Bragg replay curve.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Improving the uniformity of holographic recording using multi-layer photopolymer: Part II. Experimental results

Ra’ed Malallah, Haoyu Li, Yue Qi, Derek Cassidy, Inbarasan Muniraj, Nebras Al-Attar, and John T. Sheridan
J. Opt. Soc. Am. A 36(3) 334-344 (2019)

Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption

Haoyu Li, Yue Qi, and John T. Sheridan
J. Opt. Soc. Am. B 31(11) 2638-2647 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved