Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient point cloud segmentation approach using energy optimization with geometric features for 3D scene understanding

Not Accessible

Your library or personal account may give you access

Abstract

Efficient and quick extraction of unknown objects in cluttered 3D scenes plays a significant role in robotics tasks such as object search, grasping, and manipulation. This paper describes a geometric-based unsupervised approach for the segmentation of cluttered scenes into objects. The proposed method first over-segments the raw point clouds into supervoxels to provide a more natural representation of 3D point clouds and reduce the computational cost with a minimal loss of geometric information. Then the fully connected local area linkage graph is used to distinguish between planar and nonplanar adjacent patches. Then the initial segmentation is completed utilizing the geometric features and local surface convexities. After the initial segmentation, many subgraphs are generated, each of which represents an individual object or part of it. Finally, we use the plane extracted from the scene to refine the initial segmentation result under the framework of global energy optimization. Experiments on the Object Cluttered Indoor Dataset dataset indicate that the proposed method can outperform the representative segmentation algorithms in terms of weighted overlap and accuracy, while our method has good robustness and real-time performance.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.