Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Weak turbulence effects on different beams carrying orbital angular momentum

Abstract

The study of beams carrying orbital angular momentum (OAM) has been of interest for its use in free-space optical communications (FSOC), directed energy applications, and remote sensing (RS). For FSOC and RS, it is necessary to measure the wavefront of the beam to recover transmitted or environmental information, respectively. In this computational study, common OAM beams such as the Laguerre–Gaussian (LG), Bessel–Gaussian (BG), and Bessel beams are propagated through atmospheric turbulence and compared to their Gaussian beam counterpart. The turbulence is simulated using multiple phase screens within the framework of a split-step method. Beam metrics used to quantify beam propagation will include the spatial coherence radius, OAM spectrum, on-axis intensity, spot size, divergence, and on-axis scintillation. Atmospheric turbulence along the path is limited to the weak scintillation limit, where beam parameters can be predicted analytically using the Rytov approximation. The results show that BG beams and multiplexed BG beams retain more OAM information than their LG and Bessel beam counterparts. The LG beam on-axis intensity and on-axis scintillation are seen to be independent of OAM mode. The scintillation of the LG beam is less than a BG, Bessel, and Gaussian beam across low- and high-order OAM modes. Insight into these results is discussed through studying the beam divergence, while the initial spot sizes of the Gaussian, LG, and BG beams are limited to the same spatial extent.

© 2021 Optical Society of America

Full Article  |  PDF Article

Data Availability

Data underlying the results presented in this paper are generated by a custom MATLAB routine that can be provided upon request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.