Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband plasmon-induced transparency modulator in the terahertz band based on multilayer graphene metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

In this study, multilayer graphene metamaterials comprising graphene blocks and graphene ribbon are proposed to realize dynamic plasmon-induced transparence (PIT). By changing the position between the graphene blocks, PIT phenomenon will occur in different terahertz bands. Furthermore, PIT with a transparent window width of 1 THz has been realized. In addition, the PIT shows redshifts or blueshifts or disappears altogether upon changing the Fermi level of graphene, and hence a frequency selector from 3.91 to 7.84 THz and an electro-optical switch can be realized. Surprisingly, the group index of this structure can be increased to 469. Compared with the complex and fixed structure of previous studies, our proposed structure is simple and can be dynamically adjusted according to demands, which makes it a valuable platform for ideas to inspire the design of novel electro-optic devices.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Terahertz multimode modulator based on tunable triple-plasmon-induced transparency in monolayer graphene metamaterials

Shanshan Zhuo, Fengqi Zhou, Yanli Liu, Zhimin Liu, Xiao Zhang, Xin Luo, Yipeng Qin, Guangxin Yang, Cheng Ji, Zizhuo Zhou, Liwen Sun, and Ting Liu
J. Opt. Soc. Am. A 39(4) 594-599 (2022)

Triple plasmon-induced transparency and dynamically tunable electro-optics switch based on a multilayer patterned graphene metamaterial

Yipeng Qin, Fengqi Zhou, Zhimin Liu, Xiao Zhang, Shanshan Zhuo, Xin Luo, Cheng Ji, Guangxin Yang, Zizhuo Zhou, Liwen Sun, and Ting Liu
J. Opt. Soc. Am. A 39(3) 377-382 (2022)

Photoelectric switch and triple-mode frequency modulator based on dual-PIT in the multilayer patterned graphene metamaterial

Xiao Zhang, Zhimin Liu, Zhenbin Zhang, Enduo Gao, Fengqi Zhou, Xin Luo, Jiawei Wang, and Yuqing Wang
J. Opt. Soc. Am. A 37(6) 1002-1007 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved