Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Propagation factor of partially coherent radially polarized vortex beams in anisotropic turbulent atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

We skillfully combined the cosine theorem with the second moment theory and the Wigner distribution function and derived the analytical expressions of the propagation factor (${M^2}$-factor) of a partially coherent radially polarized vortex beam (PCRPVB) in atmospheric turbulence. Then, we comparatively studied the propagation factors of a PCRPVB and a partially coherent electromagnetic vortex beam (PCEVB) in atmospheric turbulence. The results show that a PCRPVB has a smaller value of a relative ${M^2}$-factor than a PCEVB, which means that a PCRPVB has a stronger ability to resist atmospheric turbulence than a PCEVB. To confirm our theoretical studies, the hyperbolic fitting method is combined with the random phase screen (RPS) to simulate the ${M^2}$-factor of a PCRPVB and a PCEVB through atmospheric turbulence. The study results indicate that the theoretical values agree well with the simulated values. Our results may find applications in free-space optical communications and remote sensing.

© 2021 Optical Society of America

Full Article  |  PDF Article

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.