Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Refinement method for compressive hyperspectral data cubes based on self-fusion

Not Accessible

Your library or personal account may give you access

Abstract

Compressive hyperspectral images often suffer from various noises and artifacts, which severely degrade the imaging quality and limit subsequent applications. In this paper, we present a refinement method for compressive hyperspectral data cubes based on self-fusion of the raw data cubes, which can effectively reduce various noises and improve the spatial and spectral details of the data cubes. To verify the universality, flexibility, and extensibility of the self-fusion refinement (SFR) method, a series of specific simulations and practical experiments were conducted, and SFR processing was performed through different fusion algorithms. The visual and quantitative assessments of the results demonstrate that, in terms of noise reduction and spatial–spectral detail restoration, the SFR method generally is much better than other typical denoising methods for hyperspectral data cubes. The results also indicate that the denoising effects of SFR greatly depend on the fusion algorithm used, and SFR implemented by joint bilateral filtering (JBF) performs better than SRF by guided filtering (GF) or a Markov random field (MRF). The proposed SFR method can significantly improve the quality of a compressive hyperspectral data cube in terms of noise reduction, artifact removal, and spatial and spectral detail improvement, which will further benefit subsequent hyperspectral applications.

© 2022 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.