Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavefront reconstruction method for aero-optical distortion based on compressed sensing

Not Accessible

Your library or personal account may give you access

Abstract

The wavefront sensor plays an important role in the adaptive optics (AO) system for aero-optical distortion correction. However, the bandwidth of the current data interfaces of wavefront sensors, as one of the key factors, limits applications of the AO system in extremely high-frequency aero-optical distortion correction, leading to unsatisfactory performance. In this paper, a framework for wavefront data compression using compressed sensing is established to improve the correction ability of the AO system, and a disturbed Zernike gradient dictionary (DZGD) learning over the k-singular value decomposition algorithm is proposed for achieving good performance in the compression of aero-optical wavefront data. Based on the proposed DZGD, a method for aero-optical distortion data compression and wavefront reconstruction is developed that can efficiently reduce the amount of data in the information channel without degradation of the correction effect in aero-optical distortion correction. The compressibility of aero-optical distortions over the DZGD is analyzed in detail by numerical simulations. In addition, the selection criteria of the measurement matrix and the anti-noise characteristic of the method are also discussed. Data compression using our method is feasible and highly adaptable in the correction of aero-optical distortions, and exhibits stronger resistance against detector noise compared with using the conventional dictionary.

© 2022 Optical Society of America

Full Article  |  PDF Article
More Like This
Spatial–temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations

Curtis R. Vogel, Glenn A. Tyler, and Donald J. Wittich
J. Opt. Soc. Am. A 31(7) 1666-1679 (2014)

Dynamic mode decomposition based predictive model performance on supersonic and transonic aero-optical wavefront measurements

Benjamin D. Shaffer, Austin J. McDaniel, Christopher C. Wilcox, and Edwin S. Ahn
Appl. Opt. 60(25) G170-G180 (2021)

Optimal and adaptive control of aero-optical wavefronts for adaptive optics

Jonathan Tesch and Steve Gibson
J. Opt. Soc. Am. A 29(8) 1625-1638 (2012)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.