Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bragg grating sensor for refractive index based on a D-shaped circular photonic crystal fiber

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a silica-based D-shaped circular photonic crystal fiber Bragg grating sensor for refractive index sensing is proposed theoretically. D-shaped fiber construction can effectively enhance the coupling effect between the guiding mode and external liquid analyte, which then causes a distinct shift in the typical reflection spectrum as the refractive index of the analyte varies. This design exhibits highly improved sensitivity of 487 nm/RIU in a large refractive index range from 1.30 to 1.40 compared with the previous fiber grating sensors. Study of the dependence of sensing performance on the structure parameters suggests that the resonance peak shifts towards longer wavelengths with the increased air-hole diameter of fiber, while it is almost immobile as the hole spacing and the number of air-hole layers change in a certain range. For the influence of the Bragg grating structure, results show that the resonance peak is not sensitive to the grating length, but linearly increases as the grating period expands. The effects of polishing depth and fiber preparation error on the sensor are also discussed in detail. This high-sensitivity sensor based on a D-shaped photonic crystal fiber and Bragg grating has great potential in biochemical detection, environmental monitoring, and medical sensing.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance

Chenguang Li, Bei Yan, and Jianjun Liu
J. Opt. Soc. Am. A 36(10) 1663-1668 (2019)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

Infrared D-type photonic crystal fiber sensor for special drug detection and wide-range refractive index detection

Shaofeng Wang, Chi Liu, Xin Liu, Yue Feng, Zhiwen Zhang, Tao Shen, and Wei Han
J. Opt. Soc. Am. B 39(9) 2540-2546 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.