Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Field correlations of partially coherent optical beams in underwater turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Field correlations of partially coherent optical beams at the receiver plane are formulated and evaluated in underwater turbulence. Variations of the field correlations are examined against changes in the degree of source coherence, diagonal length from the receiver point, receiver point, propagation distance, source size, ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of mean-squared temperature, and rate of dissipation of kinetic energy per unit mass of fluid. Under any underwater turbulence and link conditions, it is found that field correlations at the receiver plane reduce when the optical source becomes less coherent.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Statistical properties of a radially polarized twisted Gaussian Schell-model beam in an underwater turbulent medium

Xiaofeng Peng, Lin Liu, Yangjian Cai, and Yahya Baykal
J. Opt. Soc. Am. A 34(1) 133-139 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.