Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient algorithm to calculate the optical properties of breast tumors by high-order perturbation theory

Not Accessible

Your library or personal account may give you access

Abstract

An efficient algorithm to obtain the solutions for $n$-th order terms of perturbation expansions in absorption, scattering, and cross-coupling for light propagating in human tissue is presented. The proposed solution is free of any approximations and makes possible fast and efficient estimates of mammographic, optical tomographic, and fluorescent images, applying a perturbation order of 30 and more. The presented analysis sets the general limits for the applicability of the perturbation approach as a function of tumor size and optical properties of the human tissue. The convergence tests of the efficient calculations for large absorbing objects show excellent agreement with the reference data from finite element method calculations. The applicability of the theory is demonstrated in experiments on breast-like phantoms with high absorbing and low-scattering lesions.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms

B. Wassermann, A. Kummrow, K.T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. MÖller, R. Macdonald, P. M. Schlag, and H. Rinneberg.
Opt. Express 13(21) 8571-8583 (2005)

Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods

Sergio Fantini, Scott A. Walker, Maria Angela Franceschini, Michael Kaschke, Peter M. Schlag, and K. Thomas Moesta
Appl. Opt. 37(10) 1982-1989 (1998)

Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors

Dirk Grosenick, K. Thomas Moesta, Heidrun Wabnitz, Jörg Mucke, Christian Stroszczynski, Rainer Macdonald, Peter M. Schlag, and Herbert Rinneberg
Appl. Opt. 42(16) 3170-3186 (2003)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.