Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Double-function enhancement algorithm for low-illumination images based on retinex theory

Not Accessible

Your library or personal account may give you access

Abstract

In order to solve the problems of noise amplification and excessive enhancement caused by low contrast and uneven illumination in the process of low-illumination image enhancement, a high-quality image enhancement algorithm is proposed in this paper. First, the total-variation model is used to obtain the smoothed V- and S-channel images, and the adaptive gamma transform is used to enhance the details of the smoothed V-channel image. Then, on this basis, the improved multi-scale retinex algorithms based on the logarithmic function and on the hyperbolic tangent function, respectively, are used to obtain different V-channel enhanced images, and the two images are fused according to the local intensity amplitude of the images. Finally, the three-dimensional gamma function is used to correct the fused image, and then adjust the image saturation. A lightness-order-error (LOE) approach is used to measure the naturalness of the enhanced image. The experimental results show that compared with other classical algorithms, the LOE value of the proposed algorithm can be reduced by 79.95% at most. Compared with other state-of-the-art algorithms, the LOE value can be reduced by 53.43% at most. Compared with some algorithms based on deep learning, the LOE value can be reduced by 52.13% at most. The algorithm proposed in this paper can effectively reduce image noise, retain image details, avoid excessive image enhancement, and obtain a better visual effect while ensuring the enhancement effect.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Enhancement method with naturalness preservation and artifact suppression based on an improved Retinex variational model for color retinal images

Rui Han, Chen Tang, Min Xu, Bingtao Liang, Tianbo Wu, and Zhenkun Lei
J. Opt. Soc. Am. A 40(1) 155-164 (2023)

Mathematical insights into the original Retinex algorithm for image enhancement

Michela Lecca, Gabriele Gianini, and Raul Paolo Serapioni
J. Opt. Soc. Am. A 39(11) 2063-2072 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved