Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid spatial-spectral generative adversarial network for hyperspectral image classification

Not Accessible

Your library or personal account may give you access

Abstract

In recent years, generative adversarial networks (GNAs), consisting of two competing 2D convolutional neural networks (CNNs) that are used as a generator and a discriminator, have shown their promising capabilities in hyperspectral image (HSI) classification tasks. Essentially, the performance of HSI classification lies in the feature extraction ability of both spectral and spatial information. The 3D CNN has excellent advantages in simultaneously mining the above two types of features but has rarely been used due to its high computational complexity. This paper proposes a hybrid spatial-spectral generative adversarial network (HSSGAN) for effective HSI classification. The hybrid CNN structure is developed for the construction of the generator and the discriminator. For the discriminator, the 3D CNN is utilized to extract the multi-band spatial-spectral feature, and then we use the 2D CNN to further represent the spatial information. To reduce the accuracy loss caused by information redundancy, a channel and spatial attention mechanism (CSAM) is specially designed. To be specific, a channel attention mechanism is exploited to enhance the discriminative spectral features. Furthermore, the spatial self-attention mechanism is developed to learn the long-term spatial similarity, which can effectively suppress invalid spatial features. Both quantitative and qualitative experiments implemented on four widely used hyperspectral datasets show that the proposed HSSGAN has a satisfactory classification effect compared to conventional methods, especially with few training samples.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
MC-GAT: multi-layer collaborative generative adversarial transformer for cholangiocarcinoma classification from hyperspectral pathological images

Yuan Li, Xu Shi, Liping Yang, Chunyu Pu, Qijuan Tan, Zhengchun Yang, and Hong Huang
Biomed. Opt. Express 13(11) 5794-5812 (2022)

Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images

Xiaoqing Wan and Chunhui Zhao
J. Opt. Soc. Am. A 34(6) 1011-1020 (2017)

Compressive spectral imaging system for soil classification with three-dimensional convolutional neural network

Yue Yu, Tingfa Xu, Ziyi Shen, Yuhan Zhang, and Xi Wang
Opt. Express 27(16) 23029-23048 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.