Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Differences in color fading and recovery under sustained fixation

Not Accessible

Your library or personal account may give you access

Abstract

More than two centuries ago, Swiss philosopher I. P. V. Troxler announced in 1804 that fixated images fade away during normal vision. Since this declaration, the phenomenon now known as Troxler fading has become the subject of intensive research. Many researchers were eager to find out why we experience image fading and under what conditions image restoration happens. Here, we investigated the dynamics of color stimulus fading and recovery under sustained eye fixation. The objective of the experiments was to find out which colors fade and recover faster under isoluminant conditions. The stimuli were eight blurred color rings extending to 13° in size. Four unique colors (red, yellow, green, and blue) and four intermediate colors (magenta, cyan, yellow-green, and orange) were used. Stimuli were displayed on a computer monitor with a gray background and were isoluminant to the background. The presentation of the stimulus lasted 2 min and subjects were required to look at the fixation point in the middle of the ring and suppress eye movements. The task for subjects was to report the moments of change in the stimulus visibility by four stages of stimulus completeness. We found that all investigated colors undergo fading and recovery cycles during 2 min of observation. The data suggest that magenta and cyan colors have faster stimulus fading and undergo more recovery cycles, while longer wavelength colors slow down stimulus fading.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors

Rosa Lafer-Sousa, Yang O. Liu, Luis Lafer-Sousa, Michael C. Wiest, and Bevil R. Conway
J. Opt. Soc. Am. A 29(5) 657-670 (2012)

Factors governing the speed of color adaptation in foveal versus peripheral vision

Romain Bachy and Qasim Zaidi
J. Opt. Soc. Am. A 31(4) A220-A225 (2014)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.