Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

First-order statistics of intensity and phase in Laguerre–Gauss speckles

Abstract

Laguerre–Gaussian (LG) beams are characterized by an azimuthal index or topological charge ($m$), associated with the orbital angular momentum, and by a radial index ($p$), which represents the number of the rings in the intensity distribution. We present a detailed, systematic study of the first-order phase statistics of the speckle fields created when LG beams of different order interact with random phase screens with different optical roughness. The phase properties of the LG speckle fields are studied in both the Fresnel and the Fraunhofer regimes using the equiprobability density ellipse formalism such that analytical expressions can be derived for the phase statistics.

© 2023 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying all results presented are available from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.