Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computational spectral imaging: a contemporary overview

Not Accessible

Your library or personal account may give you access

Abstract

Spectral imaging collects and processes information along spatial and spectral coordinates quantified in discrete voxels, which can be treated as a 3D spectral data cube. The spectral images (SIs) allow the identification of objects, crops, and materials in the scene through their spectral behavior. Since most spectral optical systems can only employ 1D or maximum 2D sensors, it is challenging to directly acquire 3D information from available commercial sensors. As an alternative, computational spectral imaging (CSI) has emerged as a sensing tool where 3D data can be obtained using 2D encoded projections. Then, a computational recovery process must be employed to retrieve the SI. CSI enables the development of snapshot optical systems that reduce acquisition time and provide low computational storage costs compared with conventional scanning systems. Recent advances in deep learning (DL) have allowed the design of data-driven CSI to improve the SI reconstruction or, even more, perform high-level tasks such as classification, unmixing, or anomaly detection directly from 2D encoded projections. This work summarizes the advances in CSI, starting with SI and its relevance and continuing with the most relevant compressive spectral optical systems. Then, CSI with DL will be introduced, as well as the recent advances in combining the physical optical design with computational DL algorithms to solve high-level tasks.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Middle output regularized end-to-end optimization for computational imaging

Roman Jacome, Pablo Gomez, and Henry Arguello
Optica 10(11) 1421-1431 (2023)

Snapshot colored compressive spectral imager

Claudia V. Correa, Henry Arguello, and Gonzalo R. Arce
J. Opt. Soc. Am. A 32(10) 1754-1763 (2015)

Learning Time-multiplexed phase-coded apertures for snapshot spectral-depth imaging

Edwin Vargas, Hoover Rueda-Chacón, and Henry Arguello
Opt. Express 31(24) 39796-39810 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.