Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bronzing effect: predicting the color shine of printed surfaces by estimating the refractive index of the inks

Not Accessible

Your library or personal account may give you access

Abstract

This paper investigates the optical phenomenon responsible for the colored shine that sometimes appears at the surface of ink layers in the specular direction, often called “bronzing” or “gloss differential.” The prediction of this shine effect relies on the Fresnel formulas of the air/ink interface. The complex refractive index of the ink must therefore be determined, which is made difficult because of the roughness of inked printing supports. We propose a generic method that can be applied to any ink, without any prior knowledge of its composition or the printing substrate. In order to reduce light scattering, a solid colored area is printed with the studied ink on a glossy paper previously printed with black ink. By ellipsometry, we determine the effective refractive index of the sample. The intrinsic complex refractive index of the ink can then be extracted by modeling the optical response of the inked surface with a set of Gaussian oscillators, among which one of them approaches residual scattering. With this data, we could proceed to a fine colorimetric analysis of the bronzing color of some cyan, magenta, and yellow inks. In particular, we show that this gloss color is slightly shifted from the complementary of the ink’s usual color in diffuse reflection.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Reflectance and transmittance model for recto-verso halftone prints

Mathieu Hébert and Roger David Hersch
J. Opt. Soc. Am. A 23(10) 2415-2432 (2006)

Reflectance and transmittance model for recto-verso halftone prints: spectral predictions with multi-ink halftones

Mathieu Hébert and Roger David Hersch
J. Opt. Soc. Am. A 26(2) 356-364 (2009)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.