Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium)

Not Accessible

Your library or personal account may give you access

Abstract

The uniform asymptotic description of electromagnetic pulse propagation in a single-resonance Lorentz medium is presented. The modern asymptotic theory used here relies on Olver’s saddle-point method [ Stud. Appl. Math. Rev. 12, 228 ( 1970)] together with the uniform asymptotic theory of Handelsman and Bleistein [ Arch. Ration. Mech. Anal. 35, 267 ( 1969)] when two saddle points are at infinity (for the Sommerfeld precursor), the uniform asymptotic theory of Chester et al. [ Proc. Cambridge Philos. Soc. 53, 599 ( 1957)] for two neighboring saddle points (for the Brillouin precursor), and the uniform asymptotic theory of Bleistein [ Commun. Pure Appl. Math. 19, 353 ( 1966)] for a saddle point and nearby pole singularity (for the signal arrival). Together with the recently derived approximations for the dynamical saddle-point evolution, which are accurate over the entire space–time domain of interest, the resultant asymptotic expressions provide a complete, uniformly valid description of the entire dynamic field evolution in the mature dispersion limit. Specific examples of the delta-function pulse and the unit-step-function-modulated signal are considered.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium)

Kurt Edmund Oughstun and George C. Sherman
J. Opt. Soc. Am. B 5(4) 817-849 (1988)

Dispersive pulse propagation in a double-resonance Lorentz medium

Shioupyn Shen and Kurt Edmund Oughstun
J. Opt. Soc. Am. B 6(5) 948-963 (1989)

Numerical determination of the signal velocity in dispersive pulse propagation

Kurt E. Oughstun, Philippe Wyns, and Daniel Foty
J. Opt. Soc. Am. A 6(9) 1430-1440 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (234)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.