Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision

Not Accessible

Your library or personal account may give you access

Abstract

Thresholds for detecting the direction of motion of drifting (8-Hz) vertical gratings [of spatial frequencies 0.1, 1.0, and 10.0 cycles per degree (c/deg)] were measured in the presence of masks that varied in both spatial frequency and orientation. Masks with different temporal properties were used. The specificity of masking was also measured for a stationary test grating of spatial frequency 3.0 c/deg. After suitable scaling and transformation, the masking data gave an estimate of the two-dimensional spatial-frequency tuning surface of cortical detector units in human vision. With the assumption of small-signal linearity and zero phase, the tuning surfaces were inverse Fourier transformed to give an indication of the size and structure of the psychophysical receptive fields of detector units. The results obtained with drifting test gratings and jittering (random phase) mask gratings indicate that motion-detector receptive fields increase in size (in cycles) with increasing spatial frequency but, at all spatial scales, have a length–width ratio of 1. These results are in close agreement with the summation results reported in J. Opt. Soc. Am. A 8, 1330 ( 1991). Using the same jittering mask stimuli and stationary test gratings, we confirm reports by Daugman [ Vision Res. 24, 891 ( 1984)] and Harvey and Doan [ J. Opt. Soc. Am. A 7, 116 ( 1990)] that motion-independent units have elongated receptive fields with a length–width ratio near 1.8. We conclude that the receptive fields of motion-dependent and -independent mechanisms in human vision are fundamentally different. The possibility that the orientation selectivity of a motion unit is sharpened by its selectivity for direction of motion is discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Spatial summation properties of directionally selective mechanisms in human vision

Stephen J. Anderson and David C. Burr
J. Opt. Soc. Am. A 8(8) 1330-1339 (1991)

Opponent-movement mechanisms in human vision

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, and S. A. Klein
J. Opt. Soc. Am. A 1(8) 876-884 (1984)

Two mechanisms for the detection of slow motion

Jane C. Boulton
J. Opt. Soc. Am. A 4(8) 1634-1642 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved