Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical simulation of optical propagation using sinc approximation

Abstract

This paper further develops a recently proposed method for computing the diffraction integrals of optics based on sinc series approximation by presenting a numerical implementation, parameter selection criteria based on rigorous error analysis, and example optical propagation simulations demonstrating those criteria. Unlike fast Fourier transform (FFT)-based methods that are based on Fourier series, such as the well-known angular spectrum method (ASM), the sinc method uses a basis that is naturally suited to problems on an infinite domain. As such, it has been shown that the sinc method avoids the problems of artificial periodicity inherent in the ASM. After a brief review of the method, the detailed error analysis we provide confirms its super-algebraic convergence and verifies the claim that the accuracy of the method is independent of wavelength, propagation distance, and observation plane discretization; it depends only on the accuracy of the source field approximation. Based on this analysis, we derive parameter selection criteria for achieving a prescribed error tolerance, which will be valuable to potential users. Numerical simulations of Gaussian beam and optical phased array propagation verify the high-order accuracy and computational efficiency of the proposed algorithms. To facilitate the reproduction of numerical results, we provide a Matlab code that implements our numerical approach for the Fresnel diffraction integral. For comparison, we also present numerical results obtained with the ASM as well as the band-limited angular spectrum method.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Sinc method for generating and extending phase screens of atmospheric turbulence

Max Cubillos and Kevin Luna
J. Opt. Soc. Am. A 41(1) 59-72 (2024)

Application of a Taylor series approximation to the Debye–Wolf integral in time-domain numerical electromagnetic simulations

Andrea Mazzolani, Callum M. Macdonald, and Peter R. T. Munro
J. Opt. Soc. Am. A 39(5) 927-935 (2022)

Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem

Wenhui Zhang, Hao Zhang, Colin J. R. Sheppard, and Guofan Jin
J. Opt. Soc. Am. A 37(11) 1748-1766 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (105)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.