Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Emission power of an electric dipole in the photonic band structure of the fcc lattice

Not Accessible

Your library or personal account may give you access

Abstract

It has been suggested that spontaneous emission can be inhibited if atomic transition frequencies fall inside photonic band gaps, that is, three-dimensional frequency stop bands of electromagnetic waves generated by three-dimensional periodic dielectric materials (photonic crystals). There has been a growing interest in how atomic emission spectra are changed quantitatively inside the photonic crystals. We develop a classical theory for the calculation of the emission power from the electric dipole located in three-dimensional photonic crystals by incorporating the plane-wave method, dyadic Green’s function, Poynting theorem, and tetrahedron k-space integration. With the method we perform numerical computations for the emission power of an electric dipole located in the photonic crystals of the fcc lattice structure with spherical atoms. The results show the total inhibition of emission in the photonic band gap as well as strong enhancement around the band edges. In addition, the data indicate the strong dependencies of the emission spectrum on the dipole position and the dipole moment in the photonic crystal.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunneling in photonic band structures

Toshio Suzuki and Paul K. L. Yu
J. Opt. Soc. Am. B 12(5) 804-820 (1995)

Photonic bandgap optimization in inverted fcc photonic crystals

Marcel Doosje, Bernhard J. Hoenders, and Jasper Knoester
J. Opt. Soc. Am. B 17(4) 600-606 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved