Abstract
Using the quantum fast Fourier transform in linear optics the input mode annihilation operators are transformed into output mode annihilation operators . We show how to implement experimentally such transformations based on the Cooley–Tukey algorithm, by the use of beam splitters and phase shifters in a linear optical system. Optical systems implementing 1,2, and 3 qubits discrete Fourier transform (DFT) are described, and a general method for implementing the n-qubit DFT is analyzed. These transformations are used on various input radiation states by which phase estimation and order finding can be computed.
© 2007 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (8)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (49)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription